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• A random variable is the outcome of a random 

process that outputs a numerical value 

• A discrete random variable is a finite number of 

possible values 𝑥1, 𝑥2 … , 𝑥𝑛 with discrete 

distribution function 𝑃 𝑥1 , 𝑃 𝑥2 , … , 𝑃 𝑥𝑛  such 

that 

 𝑃 𝑥𝑖 = 1

𝑛

𝑖=1
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Discrete random variable 
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• Let the variable be the sum of the eyes on two dice 

– This is a discrete random variable 

• The discrete distribution function is 

𝑃 2 = 1/36    𝑃 6 = 5/36    𝑃 10 = 3/36 

𝑃 3 = 2/36    𝑃 7 = 6/36    𝑃 11 = 2/36 

𝑃 4 = 3/36    𝑃 8 = 5/36    𝑃 12 = 1/36 

        𝑃 5 = 4/36    𝑃 9 = 4/36 
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Example: rolling two dice 

1/6 

1/36 

2 4 6 8 10 12 
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• A continuous random variable is described by a 

probability density function (pdf)  

• Noted 𝑝(𝑥) or 𝑓(𝑥) 

• In most cases, the probability density function is a 

model for a practical situation 
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Continuous random variable 
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• Shows all values of 𝑥 and frequencies 𝑓(𝑥) 

– 𝑓(𝑥) is not a probability 

• Properties 

    𝑓 𝑥 𝑑𝑥 = 1  

   (area under curve) 

   𝑓 𝑥 ≥ 0,  𝑎 ≤ 𝑥 ≤ 𝑏 
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Continuous probability density function 

Value 

(Value, Frequency) 

Frequency 

f(x) 

a b 
x 
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• For a range of variables 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏): 
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Continuous random variable probability  

f(x) 

x a b 

𝑃 𝑎 ≤ 𝑥 ≤ 𝑏 =  𝑓 𝑥  𝑑𝑥

𝑏

𝑎
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• Expectation 𝐸(𝑥): expected value of 𝑋 depends on 

the possible values of 𝑋 and the probabilities 

(discrete) or frequencies (continuous) of these 

values 

• 𝐸 𝑥 = 𝜇 =  𝑥 𝑓 𝑥 𝑑𝑥    (continuous) 

𝐸 𝑥 = 𝜇 =  𝑥𝑖𝑃𝑖 𝑥𝑖       (discrete) 

• In the discrete and the continuous case: 

– 𝐸(𝑎𝑋)  =  𝑎 𝐸(𝑋)  for any real value 𝑎 

– 𝐸(𝑋 +  𝑌)  =  𝐸(𝑋)  +  𝐸(𝑌) 
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Expected value, mean 
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• The variance describes how far values lie from the 

mean (second moment) 

 

     𝜎2 = 𝐸 (𝑋 − 𝐸(𝑋))2 = 𝐸 𝑋2 − (𝐸(𝑋))2= 

                      𝑥2𝑓 𝑥 𝑑𝑥 − 𝜇2     (continuous) 

                     
 (𝑥𝑖−𝜇)2

𝑛
                     (discrete) 
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Variance 
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• There are a number of common probability density 

functions, e.g. 

– Uniform distribution 

– Normal distribution 

– Student (t) distribution 

– and more 

 

• These probability density functions can be used as 

models for actual situations 

 

9 

Common distributions 
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• Equally likely outcomes 

 

• Probability density 

        𝑓 𝑥 =
1

𝑏−𝑎
 

 

• Mean and standard 

deviation 

       𝜇 =
𝑎+𝑏

2
    𝜎 =

𝑏−𝑎

12
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Uniform distribution 

Mean 

Median 

x 

f(x) 

b a 

1

𝑏 − 𝑎
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• Examples 
– Random number generator in programming languages 

– Throwing a die (discrete case) 

– Final rotation angle from rightward when you spin a 
wheel with a marked ray 
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Uniform distribution 

0 360 

1/360 

f(x) 

x 
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• The eyes on a die after rolling it has a discrete 

uniform distribution as a model 

• The model is valid if the die is fair 

• The mean and expected value of the model is 3.5 

• In any actual experiment (e.g. rolling a die 100 

times), you probably do not get 3.5 as the mean 

value! 

• Often: mean of the model  mean of an 

experiment 
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Models and actual distributions 
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• For polynomial functions, integrals are easy to 

compute, e.g. 

      3𝑥 𝑑𝑥 = 3 ×
1

2
𝑥2

2

5
5

2

= 1.5 × 𝑥2
2
5  

= 1.5 × 52 − 1.5 × 22 = 37.5 − 6 = 31.5 

– This is the area below the graph of the function 

𝑓 𝑥 = 3𝑥 between 𝑥 = 2 and 𝑥 = 5 

• Reminder 

–  𝑥𝑐𝑑𝑥 = 1 (𝑐 + 1) × 𝑥𝑐+1  

–  𝑥𝑏 + 𝑥𝑐 𝑑𝑥 =  𝑥𝑏𝑑𝑥 +  𝑥𝑐𝑑𝑥 
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Simple integrals 
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• Given the following pdf, what is the probability that 

a random 𝑥 is between 5 and 7? 

– Hint: what values are at 

the scale markings on the 

vertical axis? 

 

• Given the following pdf, what is the probability that 

a random 𝑥 is between 1 

and 2.5? 
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Some questions 

0 5 10 x 

f(x) 

0 2 4 x 

f(x) 
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• Given the following pdf, 

what is the expected value 

of 𝑥? 

 

 

• Given the following pdf, 

what is the expected value 

of 𝑥? 
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Some harder questions 

0 5 10 x 

f(x) 

0 2 4 x 

f(x) 
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• Why is 𝜎 =
𝑏−𝑎

12
 ? 

• Demonstration 

– 𝜎2 =  𝑥2𝑓 𝑥 𝑑𝑥
𝑏

𝑎
 − 𝜇2 

=  𝑥2
1

𝑏 − 𝑎
 𝑑𝑥 −

𝑎 + 𝑏

2

2𝑏

𝑎

 

=
𝑥3

3
×

1

𝑏 − 𝑎
𝑎

𝑏

−
𝑎 + 𝑏

2

2

 

=
𝑏3 − 𝑎3

3(𝑏 − 𝑎)
−

𝑎 + 𝑏

2

2

= ⋯ =
(𝑏 − 𝑎)2

12
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Uniform distribution 
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• Also known as Gaussian distribution 

• Models many random processes or continuous phenomena 

• Examples 

– Measurement error, when the same measurement is done many 
times 

– Weight of products that are produced by the same process 

• Can be used to approximate discrete probability 
distributions 
– Example: Binomial distribution 

• Basis for classical statistical inference 
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Normal distribution 
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Normal distribution 
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• Bell-shape and symmetrical 

• Mean, median and mode are equal 

• Every value can occur, 𝑓 𝑥 > 0 everywhere 
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Normal distribution 

Mean 

Median 

Mode 

f(x) 

x 
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• Frequency of random variable 𝑥 

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
1
2

𝑥−𝜇
𝜎

2

 

   where 

      𝜎 is the standard deviation of population 

      𝜋 = 3.14159… and 𝑒 = 2.71828…   

      𝑥 is the value of the random variable 

      𝜇 is the mean of population 

• Usually written as 𝑁(𝜇, 𝜎2) 
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Normal distribution 
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• Appears to be a model that fits well with certain 

observations 

• Expected value 𝐸 =  𝑥
1

𝜎 2𝜋
𝑒
−

1

2

𝑥−𝜇

𝜎

2

 𝑑𝑥 = 𝜇
∞

−∞
 

because symmetric around 𝜇 

• Area under function  
1

𝜎 2𝜋
𝑒
−

1

2

𝑥

𝜎

2

𝑑𝑥
∞

−∞
= 1 

   (as usual) 
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Why this frequency? 
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• Experiment: Suppose you roll 100 dice and you 

add up the numbers 

– What is the mean? 

• Suppose you do the 

above experiment 

10,000 times, and 

make a histogram 

• Its shape will be like 

the normal distribution 
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Central limit theorem 
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C has larger 𝜇 than A, and B has a smaller 𝜎 than A 
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Effect of varying parameters 𝜇 and 𝜎 

C A 

B 
f(x) 

x 
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• Recall that probability is area under curve for a 

range of variable 𝑃 𝑏 ≤ 𝑥 ≤ 𝑐 =  𝑓 𝑥  𝑑𝑥
𝑐

𝑏
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Normal distribution probability 

f(x) 

x b c 
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• We can use the standard normal distribution 

𝑁(0, 1) (i.e. 𝜇 = 0, 𝜎2 = 1) for calculating any 

probability using tables for the standard score: 
 

𝑧 =
𝑥 − 𝜇

𝜎
 

 

• For example, we have a normal distribution of 

𝑁 10, 4 = 𝑁(𝜇, 𝜎2) 

– 𝑃 10 < 𝑥 < 13 = 𝑃(0 < 𝑧 < 1.5) 

– Using a table for the standard normal distribution we get 

𝑃 0 < 𝑧 < 1.5 = 0.4332 
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Estimate probability in normal distribution 
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• Similar to the normal distribution 

• Used when the standard deviation is not known, 

but is estimated from a data set 

• Student distribution depends on the degrees of 

freedom (i.e. size of the sample set – 1) 

• If sample size goes to 

infinity, we approach the 

normal distribution again 
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Student (t) distribution 
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• The second central moment is the variance 

      𝜎2 = 𝐸((𝑥 − 𝜇)2) i.e. expected squared deviation 

 

• The first central moment is zero (meaningless) 

 

• 𝑘-th order central moment 

𝐸 𝑥 − 𝜇 𝑘 =  (𝑥 − 𝜇)𝑘𝑓 𝑥  𝑑𝑥      (continuous) 

                          =  𝑥𝑖 − 𝜇 𝑘 𝑃(𝑥𝑖)        (discrete) 
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Central moments 
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• The third central moment describes the symmetry 

of distribution 
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Skewness 

f(x) 

x 

no skew (zero skew) 

 

symmetric distribution 
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• The third central moment describes the symmetry 

of distribution 
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Skewness 

f(x) 

x 

negative / left skew 

 

asymmetric distribution 
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• The third central moment describes the symmetry 

of distribution 
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Skewness 

f(x) 

x 

positive / right skew 

 

asymmetric distribution 
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• The skewness is defined by 

 

    
 𝑥𝑖−𝑥 3𝑛

𝑖=1

 𝑥𝑖−𝑥 3 2 𝑛
𝑖=1

×
𝑛−1 3 2 

𝑛−2
≈ 

 

             (𝑚𝑒𝑎𝑛 − 𝑚𝑜𝑑𝑒) 𝜎 ≈ 3 × (𝑚𝑒𝑎𝑛 − 𝑚𝑒𝑑𝑖𝑎𝑛) 
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Skewness 



Elementary maths for GMT – Statistics - Distributions 32 

Skewness 

f(x) 

x m
e
d
ia

n
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• The fourth central moment is the flatness or 

‘peakedness’ of a distribution, or coefficient of 

excess 
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Kurtosis 

Leptokurtic: pointed, 

positive kurtosis 

Mesokurtic: normal, 

zero kurtosis 

Platykurtic: flat, 

negative kurtosis 
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• In typical cases, we sample a population and use 
computations on the sample values to estimate 
things on the population (we want to know the 
weights of all cornflakes packages from Kellogg’s, 
but we test only a sample) 

• For example 
– we may suspect that the mean S of a sample S can 

serve as the mean  of the whole population 

– we may suspect that the variance S
2 of a sample S can 

serve as the variance  
2 of the whole population 

• But is S a good estimator of  ? Same question 
for S

2 and  
2 ? 
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A sample versus a population 
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• The estimator 𝑢  for an unknown parameter 𝑢 is 

unbiased if 𝐸 𝑢 = 𝑢 

• The mean of a sample 𝜇𝑠 is an unbiased estimator 

of the population mean 𝜇, because 

𝜇𝑠 = 𝑋 =
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 

𝐸 𝜇𝑠 = 𝐸
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

=
1

𝑛
 𝐸(𝑥𝑖)

𝑛

𝑖=1

=
𝑛

𝑛
𝜇 = 𝜇 
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(Un)biased estimator 
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• The variance of a sample 𝜎𝑆
2 is a biased estimator 

of the variance of the population, because 
 

𝐸 𝜎𝑆
2 = 𝐸

1

𝑛
 𝑥𝑖 − 𝜇𝑆

2

𝑛

𝑖=1

=
𝑛 − 1

𝑛
𝜎2 

• The variance of a sample is expected to be smaller 

than the variance of the population. This is due to 

the fact that we (need to) use the sample mean in 

the estimator (since we do not know the population 

mean) 
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(Un)biased estimator 



Elementary maths for GMT – Statistics - Distributions 

• The unbiased estimator of the variance is 

 

1

𝑛 − 1
 𝑥𝑖 − 𝜇𝑆

2

𝑛

𝑖=1

= 𝜎 2 

 

• 𝜎 2 is unbiased because 𝐸 𝜎 2 = 𝜎2 
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Variance of a sample 
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• The unbiased estimator of the standard deviation 

is 

 

 
𝑥𝑖 − 𝜇𝑆

2

𝑛 − 1

𝑛

𝑖=1

= 𝜎  

 

• 𝜎  is unbiased because 𝐸 𝜎 = 𝜎 

38 

Standard deviation of a sample 


